Chapter 16 References

Ali, K., Partridge, M.D., Olfert, M.R., 2007. Can geographically weighted regressions improve regional analysis and policy making? International Regional Science Review 30, 300.
Anselin, L., 1996. The Moran scatterplot as an ESDA tool to assess local instability in spatial association, in: Spatial Analytical Perspectives on GIS. Routledge, pp. 111–126.
Anselin, L., 1995. Local indicators of spatial association-LISA. Geographical Analysis 27, 93–115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
Anselin, L., 1988. Lagrange multiplier test diagnostics for spatial dependence and spatial heterogeneity. Geographical Analysis 20, 1–17. https://doi.org/10.1111/j.1538-4632.1988.tb00159.x
Anselin, L., Bera, A.K., Florax, R., Yoon, M.J., 1996. Simple diagnostic tests for spatial dependence. Regional Science and Urban Economics 26, 77–104. https://doi.org/10.1016/0166-0462(95)02111-6
Anselin, L., Rey, S.J., 2014. Modern spatial econometrics in practice. GeoDa Press LLC, Chicago, IL.
Baddeley, A., Rubak, E., Turner, R., 2015. Spatial Point Patterns: Methodology and Applications with R. CRC Press.
Bivand, E.P., Roger, n.d. Spatial Data Science.
Bivand, R., Millo, G., Piras, G., 2021. A review of software for spatial econometrics in R. Mathematics 9, 1276. https://doi.org/10.3390/math9111276
Brunsdon, C., Fotheringham, S., Charlton, M., 2000. Geographically weighted regression as a statistical model.
Clifford, P., Richardson, S., Hemon, D., 1989. Assessing the Significance of the Correlation between Two Spatial Processes. Biometrics 45, 123. https://doi.org/10.2307/2532039
De Jong, P., Sprenger, C., Van Veen, F., 1984. On extreme values of Moran’s I and Geary’s c. Geographical Analysis 16, 17–24.
Diggle, P., Ribeiro, P.J., 2007. Model-based geostatistics, Springer series in statistics. Springer, New York, NY.
Dutilleul, P., Clifford, P., Richardson, S., Hemon, D., 1993. Modifying the t Test for Assessing the Correlation Between Two Spatial Processes. Biometrics 49, 305. https://doi.org/10.2307/2532625
Farber, S., Páez, A., 2007. A systematic investigation of cross-validation in GWR model estimation: Empirical analysis and monte carlo simulations. J Geograph Syst 9, 371–396. https://doi.org/10.1007/s10109-007-0051-3
Fortin, M.-J., Dale, M., 2005. Spatial analysis: A guide for ecologists. Cambridge University Press, Cambridge (UK).
Getis, A., Ord, J.K., 2010. The analysis of spatial association by use of distance statistics. Geographical Analysis 24, 189–206. https://doi.org/10.1111/j.1538-4632.1992.tb00261.x
Gilley, O.W., Pace, R.K., 1996. On the harrison and rubinfeld data. Journal of Environmental Economics and Management 31, 403–405. https://doi.org/10.1006/jeem.1996.0052
Griffith, D.A., 2019. Negative Spatial Autocorrelation: One of the Most Neglected Concepts in Spatial Statistics. Stats 2, 388–415. https://doi.org/10.3390/stats2030027
Griffith, D.A., 2000. Eigenfunction properties and approximations of selected incidence matrices employed in spatial analyses. Linear Algebra and its Applications 321, 95–112.
Griffith, D.A., Chun, Y., 2022. Some useful details about the Moran coefficient, the Geary ratio, and the join count indices of spatial autocorrelation. Journal of Spatial Econometrics 3, 12. https://doi.org/10.1007/s43071-022-00031-w
Griffith, D., Chun, Y., Li, B., 2019. Spatial Regression Analysis Using Eigenvector Spatial Filtering. Academic Press.
Guo, L., Ma, Z., Zhang, L., 2008. Comparison of bandwidth selection in application of geographically weighted regression : A case study. Canadian Journal of Forest Research 38, 2526–2534. https://doi.org/10.1139/X08-091
Haining, R.P., Li, G., 2020. Modelling spatial and spatial-temporal data: A bayesian approach. CRC Press.
Harrison, D., Rubinfeld, D.L., 1978. Hedonic housing prices and the demand for clean air. Journal of Environmental Economics and Management 5, 81–102. https://doi.org/10.1016/0095-0696(78)90006-2
Hengl, T., European Commission, Joint Research Centre, Institute for Environment and Sustainability, 2007. A practical guide to geostatistical mapping of environmental variables. Publications Office, Luxembourg.
Hilbe, J., 2007. Negative binomial regression. Cambridge University Press New York.
Holm, S., 1979. A simple sequentially rejective multiple test procedure. Scandinavian journal of statistics 65–70.
Isaaks, E.H., Srivastava, M.R., 1989. Applied geostatistics.
Kelley Pace, R., LeSage, J.P., 2008. A spatial hausman test. Economics Letters 101, 282–284. https://doi.org/10.1016/j.econlet.2008.09.003
Lee, D., Mitchell, R., 2012. Boundary detection in disease mapping studies. Biostatistics 13, 415–426. https://doi.org/10.1093/biostatistics/kxr036
Lee, S., 2009. A Generalized Randomization Approach to Local Measures of Spatial Association. Geographical Analysis 41, 221–248. https://doi.org/10.1111/j.1538-4632.2009.00749.x
Lee, S.-I., 2004. A Generalized Significance Testing Method for Global Measures of Spatial Association: An Extension of the Mantel Test. Environment and Planning A: Economy and Space 36, 1687–1703. https://doi.org/10.1068/a34143
Lee, S.-I., 2001. Developing a bivariate spatial association measure: An integration of Pearson’s r and Moran’s I. Journal of Geographical Systems 3, 369–385. https://doi.org/10.1007/s101090100064
Lovelace, R., Nowosad, J., Muenchow, J., 2019. Geocomputation with R. CRC Press.
McCullagh, P., Nelder, J., 1989. Generalised linear modelling, Chapman and Hall.
Moraga, P., 2019. Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny. CRC Press.
Murakami, D., Lu, B., Harris, P., Brunsdon, C., Charlton, M., Nakaya, T., Griffith, D.A., 2019. The importance of scale in spatially varying coefficient modeling. Annals of the American Association of Geographers 109, 50–70. https://doi.org/10.1080/24694452.2018.1462691
Ord, J.K., Getis, A., 2012. Local spatial heteroscedasticity (LOSH). Ann Reg Sci 48, 529–539. https://doi.org/10.1007/s00168-011-0492-y
Raleigh, C., Linke, A., Hegre, H., Karlsen, J., 2010. Introducing ACLED: An Armed Conflict Location and Event Dataset: Special Data Feature. Journal of Peace Research 47, 651–660. https://doi.org/10.1177/0022343310378914
Tiefelsdorf, M., Boots, B., 1995. The exact distribution of Moran’s I. Environment and Planning A 27, 985–999.
Wheeler, D., Tiefelsdorf, M., 2005. Multicollinearity and correlation among local regression coefficients in geographically weighted regression. J Geograph Syst 7, 161–187. https://doi.org/10.1007/s10109-005-0155-6
Wickham, H., Grolemund, G., 2016. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data. "O’Reilly Media, Inc.".
Xu, M., Mei, C.-L., Yan, N., 2014. A note on the null distribution of the local spatial heteroscedasticity (LOSH) statistic. Ann Reg Sci 52, 697–710. https://doi.org/10.1007/s00168-014-0605-5
Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., Smith, G.M., 2009. Mixed effects models and extensions in ecology with r. Springer Verlag.